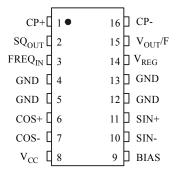

IL8190N

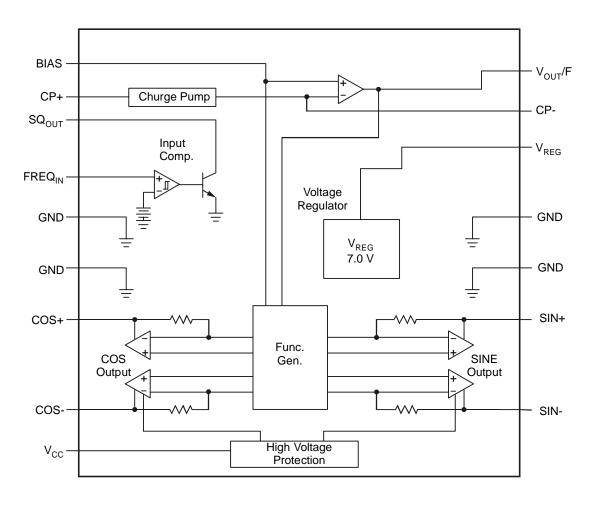

Precision Air-Core Tach/Speedo Driver with Return to Zero

The IL8190N is specifically designed for use with air-core meter movements. The IC provides all the functions necessary for an analog tachometer or speedometer. The IL8190N takes a speed sensor input and generates sine and cosine related output signals to differentially drive an air-core meter.

- Direct Sensor Input
- High Output Torque
- Low Pointer Flutter
- High Input Impedance
- Overvoltage Protection
- Return to Zero

PIN ASSIGNMENT

ABSOLUTE MAXIMUM RATINGS*


Symbol	Parameter		Value	Unit
17	Supply Voltage 100 ms Pulse Transient Continuous		60	V
V_{CC}			24	V
Topr	Operating Temperature		-40 to +105	°C
T_J	Junction Temperature		-40 to +150	°C
Tstg	Storage Temperature		-60 to +150	°C
$T_{\rm L}$	Lead Temperature Soldering: Wave Solder (through hole styles only) (Note)		260 peak	°C
	ESD (Human Body Model)		4.0	kV

Note: 10 seconds maximum.

^{*}The maximum package power dissipation must be observed.

BLOCK DIAGRAM

PIN DISCRIPTIONS

Pin No.	Symbol	Function	
1	CP+	Positive input to charge pump	
2	SQ _{OUT}	Buffered square wave output signal	
3	$FREQ_{IN}$	Speed or RPM input signal	
4, 5, 12, 13	GND	Ground Connections	
6	COS+	Positive cosine output signal	
7	COS-	Negative cosine output signal	
8	V_{CC}	Ignition or battery supply voltage	
9	BIAS	Test point or zero adjustment	
10	SIN-	Negative sine output signal	
11	SIN+	Positive sine output signal	
14	V_{REG}	Voltage regulator output	
15	V _{OUT} /F	Output voltage proportional to input signal frequency	
16	CP-	Negative input to charge pump	

ELECTRICAL CHARACTERISTICS

(-40°C \leq $T_A \leq$ 85°C, 8.5 V \leq $V_{CC} \leq$ 16 V, unless otherwise specified)

	3.1 16 .1 3.6 .70 - .4 ±8 - 20 - V _C 10 0.4 02 10 .0 8.5 .6 -	0 V mV 0 μA 0 kHz C V 0 V μA
$ \begin{array}{ c c c c c } \hline V_{CC} & Normal Operation Range & 8.5 & 13. \\ \hline \textbf{Input Comparator Section} \\ \hline V_{TH} & Positive Input Threshold & 1.0 & 2.1 \\ \hline V_{H} & Input Hysteresis & 200 & 47. \\ \hline I_{IB1} & Input Bias Current (Note 1) & 0 \ V \leq V_{IN} \leq 8.0 \ V & - & \pm 4.0 \ V_{IN} 1 \\ \hline F_{IN} & Input Frequency Range & 0 & - & \pm 4.0 \ V_{IN} 1 \\ \hline F_{IN} & Input Voltage Range & in series with 1.0 k\Omega & -1.0 & - \\ \hline V_{SAT} & Output V_{SAT} & I_{O} = 10 \ mA & - & 0.1 \\ \hline I_{SDMG} & Output Leakage & V_{O} = 7.0 \ V & - & 0.0 \\ \hline V_{CC-TH} & Low \ V_{CC} \ Disable Threshold & 7.0 & 8.6 \\ \hline V_{L} & Logic 0 Input Voltage & 1.0 & 1.0 & 1.6 \\ \hline \hline Voltage Regulator Section & V_{REF} & Output Voltage & 6.25 & 7.0 \\ \hline I_{O} & Output Load Current & - & - & - \\ \hline \Delta V_{REF-LIOAD} & Output Load Regulation & 0 to 10 \ mA & - & 4 \\ \hline \Delta V_{REF-LIOB} & Output Line Regulation & 8.5 \ V \leq V_{CC} \leq 16 \ V & - & 3.0 \\ \hline PRS & Power Supply Rejection & V_{CC} = 13.1 \ V, 1.0 \ V_{PP} \ 1.0 & 34 & 46 \\ \hline \hline \textbf{Charge Pump Section} & V_{CC} = 13.1 \ V, 1.0 \ V_{PP} \ 1.0 & 34 & 46 \\ \hline \hline \textbf{Charge Pump Section} & Input Bias Current & - & 35 \\ \hline V_{BIAS} & V_{BIAS} \ Input Voltage & 1.5 & 2.1 \\ \hline U_{NINV} & Inverting Input Voltage & 1.5 & 2.1 \\ \hline U_{NINV} & Non Invert. Input Voltage & 1.5 & 2.1 \\ \hline K & V_{OUT}/F \ Gain & @ 350 \ Hz, \ C_{CP} = 0.0033 \ \mu F, \ R_{T} = 243 \ k\Omega & 0.9 & 1.6 \\ \hline G_{N+} & Norton \ Gain, Positive & I_{IN} = 15 \ \mu A & 0.9 & 1.6 \\ \hline Function \ Generator \ Section: & -40^{\circ}C \leq T_A \leq 85^{\circ}C, \ V_{CC} = 13.1 \ V \ unless \ otherwise \ noted \\ \hline V_{CC-THI} & Return to Zero Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline \hline \ V_{CC-THI} & Return to Zero Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline \ V_{CC-THI} & Return to Zero Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline \ V_{CC-THI} & Return to Zero Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline \ \ V_{CC-THI} & Return to Zero Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	3.1 16 .1 3.6 .70 - .4 ±8 - 20 - V _C 10 0.4 02 10 .0 8.5 .6 -	0 V mV 0 μA 0 kHz C V 0 V μA
$ \begin{array}{ c c c c } \hline \textbf{Input Comparator Section} \\ \hline V_{TH} & Positive Input Threshold & 1.0 & 2.1 \\ \hline V_{H} & Input Hysteresis & 200 & 476 \\ \hline I_{IB1} & Input Bias Current (Note 1) & 0 \ V \leq V_{IN} \leq 8.0 \ V & - & \pm 46 \ F_{IN} & Input Frequency Range & 0 & - \\ \hline V_{IN} & Input Voltage Range & in series with 1.0 \ k\Omega & -1.0 & - \\ \hline V_{SAT} & Output \ V_{SAT} & I_{O} = 10 \ mA & - & 0.1 \\ \hline I_{SING} & Output \ Leakage & V_{O} = 7.0 \ V & - & 0.0 \\ \hline V_{CC-TH} & Low \ V_{CC} \ Disable Threshold & 7.0 & 8.6 \\ \hline V_{L} & Logic 0 \ Input Voltage & 1.0 & 1.6 \\ \hline \textbf{Voltage Regulator Section} & & & & & & & & & \\ \hline V_{REF} & Output \ Voltage & & & & & & & & & & \\ \hline V_{REF} & Output \ Voltage & & & & & & & & & & \\ \hline I_{O} & Output \ Load \ Current & & & & & & & & & & \\ \hline AV_{REF-LIOAD} & Output \ Load \ Regulation & 8.5 \ V \leq V_{CC} \leq 16 \ V & - & 30 \\ \hline PRS & Power \ Supply \ Rejection & & & & & & & & \\ \hline V_{RES} & Power \ Supply \ Rejection & & & & & & & & \\ \hline V_{CC} = 13.1 \ V, 1.0 \ V_{PP} \ 1.0 & 34 & 46 \\ \hline \textbf{Charge Pump Section} & & & & & & & & \\ \hline U_{INV} & Inverting \ Input \ Voltage & & & & & & & & \\ \hline I_{IB2} & Input \ Bias \ Current & & & & & & & & & \\ \hline V_{BIAS} & V_{BIAS} \ Input \ Voltage & & & & & & & & & \\ \hline U_{NINV} & Non \ Invert. \ Input \ Voltage & & & & & & & & & \\ \hline L_{K} & Linearity \ (Note 2) & & & & & & & & & & & \\ \hline G_{N+} & Norton \ Gain, \ Positive & I_{IN} = 15 \ \mu A & & & & & & & \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_{A} = 25^{\circ}C & 5.2 & 5.2 \\ \hline Differential \ Drive \ Voltage & 5.5 & 6.6 \\ \hline \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_{A} = 25^{\circ}C & 5.2 & 5.2 \\ \hline Differential \ Drive \ Voltage & 5.5 & 6.6 \\ \hline \hline \end{tabular} \begin{tabular}{c} 1.0 \ V_{CC-TH1} \ Return to \ Zero \ Threshold & T_{A} = 25^{\circ}C & 5.2 & 5.2 \\ \hline \end{tabular} \begin{tabular}{c} 1.0 \ V_{CC-TH1} \ Drive \ Voltage & 5.5 & 6.6 \\ \hline \end{tabular} \begin{tabular}{c} 1.0 \ V_{CC-TH1} \ Drive \ Voltage & 5.5 & 6.6 \\ \hline ta$.1 3.0 704 ±8 - 20 - V _C 10 0.4 02 10 .0 8.5 .6 -	0 V mV 0 μA 0 kHz C V 0 V
$\begin{array}{ c c c c c } \hline V_{TH} & Positive Input Threshold & 1.0 & 2.1 \\ \hline V_{H} & Input Hysteresis & 200 & 476 \\ \hline I_{IBI} & Input Bias Current (Note 1) & 0 \ V \leq V_{IN} \leq 8.0 \ V & - & \pm 4 \\ \hline F_{IN} & Input Frequency Range & 0 & - \\ \hline V_{IN} & Input Voltage Range & in series with 1.0 \ k\Omega & -1.0 & - \\ \hline V_{SAT} & Output V_{SAT} & I_{O} = 10 \ mA & - & 0.1 \\ \hline I_{SING} & Output Leakage & V_{O} = 7.0 \ V & - & 0.0 \\ \hline V_{CC-TH} & Low \ V_{CC} \ Disable Threshold & 7.0 & 8.6 \\ \hline V_{L} & Logic 0 \ Input \ Voltage & 1.0 & 1.6 \\ \hline Voltage Regulator Section & & & & & & & \\ \hline V_{REF} & Output \ Voltage & & 6.25 & 7.0 \\ \hline I_{O} & Output \ Load \ Current & & - & - & \\ \hline \Delta V_{REF-LOAD} & Output \ Load \ Regulation & 0 \ to 10 \ mA & - & - & 4 \\ \hline \Delta V_{REF-LINE} & Output \ Line \ Regulation & 8.5 \ V \leq V_{CC} \leq 16 \ V & - & 30 \\ \hline PRS & Power \ Supply \ Rejection & V_{CC} = 13.1 \ V, 1.0 \ V_{PP} \ 1.0 & 34 & 46 \\ \hline Charge \ Pump \ Section & & & & \\ \hline U_{INV} & Inverting \ Input \ Voltage & & 1.5 & 2.1 \\ \hline I_{IB2} & Input \ Bias \ Current & & - & 35 \\ \hline V_{BIAS} & V_{BIAS} \ Input \ Voltage & & 1.5 & 2.1 \\ \hline U_{NINV} & Non \ Invert. \ Input \ Voltage & & 1.5 & 2.1 \\ \hline U_{NINV} & Non \ Invert. \ Input \ Voltage & & 1.5 & 2.1 \\ \hline K & V_{OUT}/F \ Gain & & & & & & & & & & \\ G_{N+} & Norton \ Gain, \ Positive & I_{IN} = 15 \ \mu A & & 0.9 & 1.6 \\ \hline Function \ Generator \ Section: \ -40^{\circ} \ C \ T_{A} \leq 85^{\circ} \ C, \ V_{CC} = 13.1 \ V \ unless \ otherwise \ noted \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-THI} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ} \ C & 5.2 & 6.6 \\ \hline V_{CC-$	70	mV 0 μA 0 kHz C V 0 V 0 μA
$\begin{array}{ c c c c c } \hline V_H & Input Hysteresis & 200 & 470 \\ \hline I_{IB1} & Input Bias Current (Note 1) & 0 \ V \leq V_{IN} \leq 8.0 \ V & - & \pm 40 \ F_{IN} & Input Frequency Range & 0 & - \\ \hline V_{IN} & Input Voltage Range & in series with 1.0 \ k\Omega & -1.0 & - \\ \hline V_{SAT} & Output V_{SAT} & I_O = 10 \ mA & - & 0.1 \\ \hline I_{SING} & Output Leakage & V_O = 7.0 \ V & - & 0.0 \\ \hline V_{CC-TH} & Low \ V_{CC} \ Disable Threshold & 7.0 & 8.6 \\ \hline V_L & Logic 0 \ Input \ Voltage & 1.0 & 1.6 \\ \hline Voltage Regulator Section & & & & & & & & \\ \hline V_{REF} & Output \ Voltage & & 6.25 & 7.0 \\ \hline I_O & Output \ Load \ Current & - & - & & & \\ \hline \Delta V_{REF-LOAD} & Output \ Load \ Regulation & 0 \ to 10 \ mA & - & - & 4 \\ \hline \Delta V_{REF-LINE} & Output \ Line \ Regulation & 8.5 \ V \leq V_{CC} \leq 16 \ V & - & 30 \\ \hline PRS & Power \ Supply \ Rejection & V_{CC} = 13.1 \ V, 1.0 \ V_{PP} \ 1.0 & 34 & 46 \\ \hline Charge \ Pump \ Section & & & & & \\ \hline U_{INV} & Inverting \ Input \ Voltage & & & 1.5 & 2.1 \\ \hline I_{IB2} & Input \ Bias \ Current & - & 35 \\ \hline V_{BIAS} & V_{BIAS} \ Input \ Voltage & & & 1.5 & 2.1 \\ \hline U_{NINV} & Non \ Invert. \ Input \ Voltage & & & 1.5 & 2.1 \\ \hline K & V_{OUT}/F \ Gain & & & & & & & & & & & \\ G_{N+} & Norton \ Gain, \ Positive & I_{IN} = 15 \ \muA & & 0.9 \ 1.6 \\ \hline Function \ Generator \ Section: \ -40^{\circ} C \leq T_A \leq 85^{\circ} C, \ V_{CC} = 13.1 \ V \ unless \ otherwise \ noted \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Return to \ Zero \ Threshold & T_A = 25^{\circ} C & 5.2 & 6.6 \\ \hline V_{CC-TH1} & Re$	70	mV 0 μA 0 kHz C V 0 V 0 μA
$\begin{array}{ c c c c }\hline I_{IBI} & Input Bias Current (Note 1) & 0 \ V \le V_{IN} \le 8.0 \ V & - & \pm 4 \ F_{IN} & Input Frequency Range & 0 & - \ V_{IN} & Input Voltage Range & in series with 1.0 \ k\Omega & -1.0 & - \ V_{SAT} & Output V_{SAT} & I_0 = 10 \ mA & - & 0.1 \ I_{SING} & Output Leakage & V_0 = 7.0 \ V & - & 0.0 \ V_{CC-TH} & Low \ V_{CC} \ Disable Threshold & 7.0 & 8.6 \ V_L & Logic 0 \ Input Voltage & 1.0 & 1.6 \ V_L & Logic 0 \ Input Voltage & 1.0 & 1.6 \ V_L & Logic 0 \ Input Voltage & 6.25 & 7.0 \ I_0 & Output \ Load \ Current & - & - \ AV_{REF} \ Output \ Voltage & 6.25 & 7.0 \ I_0 & Output \ Load \ Regulation & 0 \ to 10 \ mA & - & 4 \ AV_{REF-LINE} & Output \ Line \ Regulation & 8.5 \ V \le V_{CC} \le 16 \ V & - & 30 \ RHz & V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V, 1.0 \ V_{PIP} \ 1.0 & 34 & 46 \ V_{CC} = 13.1 \ V_{CC} \ V_{CC} = 13.1 \ V_{CC} \ V_{C$	+8 +8 -20	0 μA 0 kHz c V 0 V
$ F_{IN} Input Frequency Range \\ V_{IN} Input Voltage Range \\ V_{ISAT} Output V_{SAT} I_{O} = 10 \text{ mA} \\ V_{CC-TH} Input Voltage Range \\ V_{O} = 7.0 \text{ V} \\ V_{O} = 7.0 V$	- 20 - V _C 10 0.4 02 10 .0 8.3 .6 -	0 kHz C V 0 V 0 μA
$\begin{array}{ c c c c } \hline V_{IN} & Input Voltage Range & in series with 1.0 k\Omega & -1.0 & -1.0 \\ \hline V_{SAT} & Output V_{SAT} & I_0 = 10 \text{ mA} & -0.1 \\ \hline I_{SING} & Output Leakage & V_0 = 7.0 \text{ V} & -0.0 \\ \hline V_{CC-TH} & Low V_{CC} Disable Threshold & 7.0 & 8.0 \\ \hline V_L & Logic 0 Input Voltage & 1.0 & 1.6 \\ \hline Voltage Regulator Section & & & & \\ \hline V_{REF} & Output Voltage & 6.25 & 7.0 \\ \hline I_O & Output Load Current & - & - \\ \hline \Delta V_{REF-LOAD} & Output Load Regulation & 0 to 10 mA & - & 4 \\ \hline \Delta V_{REF-LINE} & Output Line Regulation & 8.5 \text{ V} \leq \text{V}_{CC} \leq 16 \text{ V} & - & 30 \\ \hline PRS & Power Supply Rejection & V_{CC} = 13.1 \text{ V}, 1.0 \text{ V}_{PIP} 1.0 & 34 & 46 \\ \hline \textbf{Charge Pump Section} & & & & & & \\ \hline U_{INV} & Inverting Input Voltage & & & & 1.5 & 2.1 \\ \hline I_{IB2} & Input Bias Current & - & & 35 \\ \hline V_{BIAS} & V_{BIAS} Input Voltage & & & & 1.5 & 2.1 \\ \hline U_{NINV} & Non Invert. Input Voltage & & & & 1.5 & 2.1 \\ \hline L_K & Linearity (Note 2) & & & & & & & \\ \hline & & & & & & & & & & \\ \hline & & & &$	- V _C 10 0.4 02 10 .0 8.5 .6 -	C V 0 V 0 μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 0.4 02 10 .0 8.3 .6 –	0 V 0 μA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 10 .0 8.5 .6 –	μΑ
$\begin{array}{ c c c c c } \hline V_{CC-TH} & Low V_{CC} Disable Threshold \\ \hline V_L & Logic 0 Input Voltage \\ \hline Voltage Regulator Section \\ \hline V_{REF} & Output Voltage \\ \hline L_O & Output Load Current \\ \hline \Delta V_{REF-LOAD} & Output Load Regulation \\ \hline PRS & Power Supply Rejection \\ \hline U_{INV} & Inverting Input Voltage \\ \hline L_K & Linearity (Note 2) \\ \hline K & V_{OUT}/F Gain \\ \hline G_{N-} & Norton Gain, Pegative \\ \hline V_{CC-THI} & Return to Zero Threshold \\ \hline V_{CC-THI} & Differential Drive Voltage \\ \hline V_{CC-THI} & Return to Zero Threshold \\ \hline V_{$.0 8.5	·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.6 –	
Voltage Regulator Section V_{REF} Output Voltage 6.25 7.0 I_{O} Output Load Current - - $\Delta V_{REF-LOAD}$ Output Load Regulation 0 to 10 mA - 4 $\Delta V_{REF-LINE}$ Output Line Regulation 8.5 V ≤ V _{CC} ≤ 16 V - 30 PRS Power Supply Rejection V _{CC} = 13.1 V, 1.0 V _{P/P} 1.0 34 46 Charge Pump Section U _{INV} Inverting Input Voltage 1.5 2.1 U _{INV} Inverting Input Voltage 1.5 2.1 U _{NINV} Non Invert. Input Voltage 1.5 2.1 U _{NINV} Non Invert. Input Voltage 1.5 2.1 L _K Linearity (Note 2) @ 0; 87.5; 175; 262.5; -0.10 0.2 K V _{OUT} /F Gain @ 350 Hz, C _{CP} = 0.0033 μF, R _T = 243 kΩ 7.0 11 G _{N+} Norton Gain, Positive I _{IN} = 15 μA 0.9 1.6 G _{N-} Norton Gain, Negative I _I = 25°C 5.2 6.6 </td <td>l I</td> <td>5 V</td>	l I	5 V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 7.5	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 75	
$\begin{array}{ c c c c c c }\hline \Delta V_{REF-LOAD} & Output \ Load \ Regulation & 0 \ to \ 10 \ mA & - & 4 \\ \hline \Delta V_{REF-LINE} & Output \ Line \ Regulation & 8.5 \ V \le V_{CC} \le 16 \ V & - & 30 \\ \hline PRS & Power \ Supply \ Rejection & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V, \ 1.0 \ V_{P/P} \ 1.0 & 34 & 46 \\ \hline Charge \ Pump \ Section & V_{CC} = 13.1 \ V \ unless \ otherwise \ noted \\ \hline V_{CC-THI} \ Return \ to \ Zero \ Threshold & V_{CC} = 13.1 \ V \ unless \ otherwise \ noted \\ \hline V_{CC-THI} \ Return \ to \ Zero \ Threshold & V_{CC-THI} \ Prive \ Voltage & 5.5 \ 6.6 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	1.3	0 V
$\begin{array}{ c c c c c c }\hline \Delta V_{REF-LINE} & Output Line Regulation \\\hline PRS & Power Supply Rejection \\\hline PRS & Power Supply Rejection \\\hline \hline V_{CC} = 13.1 \text{ V}, 1.0 \text{ V}_{P/P} 1.0 \\\hline kHz & 34 & 46 \\\hline \hline Charge Pump Section \\\hline \hline U_{INV} & Inverting Input Voltage \\\hline U_{INV} & Inverting Input Voltage \\\hline U_{IRS} & Input Bias Current \\\hline U_{NINV} & Non Invert. Input Voltage \\\hline U_{NINV} & Non Invert. Input Voltage \\\hline L_K & Linearity (Note 2) \\\hline K & V_{OUT}/F Gain \\\hline G_{N+} & Norton Gain, Positive \\\hline G_{N-} & Norton Gain, Negative \\\hline V_{CC-THI} & Return to Zero Threshold \\\hline V_{CC-THI} & Return to Zero Threshold \\\hline V_{CC-THI} & Return to Zero Threshold \\\hline T_A = 25°C \\\hline \hline S 5 & 6.5 \\\hline \end{array}$	- 10) mA
PRS Power Supply Rejection $V_{CC} = 13.1 \text{ V}, 1.0 \text{ V}_{P/P} 1.0$ kHz 34 46 Charge Pump Section U _{INV} Inverting Input Voltage 1.5 2.1 I _{IB2} Input Bias Current - 35 V _{BIAS} V _{BIAS} Input Voltage 1.5 2.1 U _{NINV} Non Invert. Input Voltage I _{IN} = 1.0 mA - 0.6 L _K Linearity (Note 2) (@ 0; 87.5; 175; 262.5; +350 Hz -0.10 0.2 K V _{OUT} /F Gain (@ 350 Hz, C _{CP} = 0.0033 μF, R _T = 243 kΩ 7.0 11 G _{N+} Norton Gain, Positive I _{IN} = 15 μA 0.9 1.6 G _{N-} Norton Gain, Negative I _{IN} = 15 μA 0.9 1.6 Function Generator Section: -40°C ≤ T _A ≤ 85°C, V _{CC} = 13.1 V unless otherwise noted V _{CC-THI} Return to Zero Threshold T _A = 25°C 5.2 6.6	4 50) mV
$ \begin{array}{ c c c c c c } \hline Power Suppry Rejection & kHz & 34 & 46 \\ \hline \hline Charge Pump Section & & & & & & & & & & & & & & & & & & &$	0 15	0 mV
$\begin{array}{ c c c c c c } \hline U_{INV} & Inverting Input Voltage & 1.5 & 2.1 \\ \hline I_{IB2} & Input Bias Current & - & 35 \\ \hline V_{BIAS} & V_{BIAS} Input Voltage & 1.5 & 2.1 \\ \hline U_{NINV} & Non Invert. Input Voltage & I_{IN} = 1.0 \text{ mA} & - & 0.6 \\ \hline L_{K} & Linearity (Note 2) & @ 0; 87.5; 175; 262.5; & -0.10 & 0.2 \\ \hline K & V_{OUT}/F Gain & @ 350 \text{ Hz, } C_{CP} = 0.0033 \mu\text{F,} & 7.0 & 11 \\ \hline R_{T} = 243 k\Omega & 0.9 & 1.6 \\ \hline G_{N-} & Norton Gain, Positive & I_{IN} = 15 \mu\text{A} & 0.9 & 1.6 \\ \hline G_{N-} & Norton Gain, Negative & I_{IN} = 15 \mu\text{A} & 0.9 & 1.6 \\ \hline V_{CC-TH1} & Return to Zero Threshold & T_{A} = 25^{\circ}\text{C} & 5.2 & 6.6 \\ \hline Differential Drive Voltage & 5.5 & 6.5 \\ \hline \end{array}$	6 –	dB
I _{IB2} Input Bias Current — 35 V _{BIAS} V _{BIAS} Input Voltage 1.5 2.1 U _{NINV} Non Invert. Input Voltage I _{IN} = 1.0 mA — 0.6 L _K Linearity (Note 2) (@ 0; 87.5; 175; 262.5; +350 Hz —0.10 0.2 K V _{OUT} /F Gain (@ 350 Hz, C _{CP} = 0.0033 μF, R _T = 243 kΩ 7.0 11 G _{N+} Norton Gain, Positive I _{IN} = 15 μA 0.9 1.0 G _{N-} Norton Gain, Negative I _{IN} = 15 μA 0.9 1.0 Function Generator Section: -40°C ≤ T _A ≤ 85°C, V _{CC} = 13.1 V unless otherwise noted V _{CC-TH1} Return to Zero Threshold T _A = 25°C 5.2 6.6 Differential Drive Voltage 5.5 6.6		
$\begin{array}{ c c c c c c c } \hline V_{BIAS} & V_{BIAS} \ Input \ Voltage & I_{IN} = 1.0 \ mA & - & 0.6 \\ \hline U_{NINV} & Non \ Invert. \ Input \ Voltage & I_{IN} = 1.0 \ mA & - & 0.6 \\ \hline L_{K} & Linearity (Note 2) & @ 0; 87.5; 175; 262.5; & -0.10 & 0.2 \\ \hline K & V_{OUT}/F \ Gain & @ 350 \ Hz, \ C_{CP} = 0.0033 \ \mu F, & 7.0 & 11 \\ \hline R_{T} = 243 \ k\Omega & 0.9 & 1.6 \\ \hline G_{N-} & Norton \ Gain, \ Positive & I_{IN} = 15 \ \mu A & 0.9 & 1.6 \\ \hline G_{N-} & Norton \ Gain, \ Negative & I_{IN} = 15 \ \mu A & 0.9 & 1.6 \\ \hline Function \ Generator \ Section: -40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ V_{CC} = 13.1 \ V \ unless \ otherwise \ noted \\ \hline V_{CC-TH1} & Return \ to \ Zero \ Threshold & T_{A} = 25^{\circ}C & 5.2 & 6.6 \\ \hline Differential \ Drive \ Voltage & 5.5 & 6.5 \\ \hline \end{array}$.1 2.5	5 V
$\begin{array}{ c c c c c c } \hline U_{NINV} & Non Invert. Input Voltage & I_{IN} = 1.0 \text{ mA} & - & 0.6 \\ \hline L_{K} & Linearity (Note 2) & @ 0; 87.5; 175; 262.5; \\ & + 350 \text{ Hz} & -0.10 & 0.2 \\ \hline K & V_{OUT}/F \text{ Gain} & @ 350 \text{ Hz, } C_{CP} = 0.0033 \mu\text{F}, \\ R_{T} = 243 k\Omega & 0.9 & 1.0 \\ \hline G_{N+} & Norton \text{ Gain, Positive} & I_{IN} = 15 \mu\text{A} & 0.9 & 1.0 \\ \hline G_{N-} & Norton \text{ Gain, Negative} & I_{IN} = 15 \mu\text{A} & 0.9 & 1.0 \\ \hline Function \text{ Generator Section: } -40^{\circ}\text{C} \leq T_{A} \leq 85^{\circ}\text{C}, V_{CC} = 13.1 \text{ V unless otherwise noted} \\ \hline V_{CC-TH1} & \text{Return to Zero Threshold} & T_{A} = 25^{\circ}\text{C} & 5.2 & 6.0 \\ \hline Differential Drive Voltage & 5.5 & 6.5 \\ \hline \end{array}$	5 15	0 nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1 2.5	5 V
	.6 1.	l V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 +0.	70 %
G_{N+} Norton Gain, Positive $I_{IN} = 15 \mu A$ 0.9 1.0 G_{N-} Norton Gain, Negative $I_{IN} = 15 \mu A$ 0.9 1.0 Function Generator Section: −40°C ≤ T_A ≤ 85°C, $V_{CC} = 13.1 V$ unless otherwise noted V_{CC-TH1} Return to Zero Threshold $T_A = 25$ °C 5.2 6.0 Differential Drive Voltage	1 13	mV/H z
G_{N-} Norton Gain, Negative $I_{IN} = 15 \mu A$ 0.9 1.0 Function Generator Section: -40°C ≤ T_A ≤ 85°C, $V_{CC} = 13.1 V$ unless otherwise noted V_{CC-TH1} Return to Zero Threshold $T_A = 25$ °C 5.2 6.0 Differential Drive Voltage	.0 1.1	1
Function Generator Section: $-40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}$, $V_{CC} = 13.1 \text{ V}$ unless otherwise noted $V_{\text{CC-TH1}}$ Return to Zero Threshold $T_{A} = 25^{\circ}\text{C}$ 5.26.0Differential Drive Voltage	.0 1.	i l
$V_{\text{CC-TH1}}$ Return to Zero Threshold $T_A = 25^{\circ}\text{C}$ 5.2 6.0		
Differential Drive Voltage 5.5 6.5	.0 7.0) V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.5 7.5	5 V
$ U_{\text{(SIN+-SIN-)}} \begin{array}{ c c c c c c } \hline \text{Differential Drive Voltage} \\ \hline (V_{\text{SIN+}} - V_{\text{SIN-}}) \\ \hline \end{array} 8.5 \text{ V} \leq V_{\text{CC}} \leq 16 \text{ V}, \ \Theta = 90^{\circ} 5.5 6.5 $.5 7.5	5 V
$ U_{\text{(COS+-COS-)}} $	5.5 –5.	5 V
$U_{\text{(SIN+-SIN-)}} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5.5 –5.	5 V
I_{OUT} Differential Drive Current 8.5 V \leq V _{CC} \leq 16 V - 33	3 42	2 mA
 Θ Zero Hertz Output Angle -1.5 0 		
Function Generator Error (Note 3) Reference Figures 1, 2, 3, 4 $V_{CC} = 13.1 \text{ V}$ $\Theta = 0^{\circ} \text{ to } 305^{\circ}$ -2.0 0		0 deg

ELECTRICAL CHARACTERISTICS (continued)

 $(-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}, 8.5 \text{ V} \le \text{V}_{\text{CC}} \le 16 \text{ V}, \text{ unless otherwise specified})$

Symbol	Parameter	Parameter Test Condition			Max	Unit
Function Go	Function Generator Section: $-40^{\circ}\text{C} \le T_{\text{A}} \le 85^{\circ}\text{C}$, $V_{\text{CC}} = 13.1 \text{ V}$ unless otherwise noted (continued)					
	Function Generator Error	$13.1 \text{ V} \le \text{V}_{\text{CC}} \le 16 \text{ V}$	-2.5	0	+2.5	deg
	Function Generator Error	$13.1 \text{ V} \le \text{V}_{\text{CC}} \le 11 \text{ V}$	-1.0	0	+1.0	deg
	Function Generator Error	$13.1 \text{ V} \le \text{V}_{\text{CC}} \le 9.0 \text{ V}$	-3.0	0	+3.0	deg
	Function Generator Error	$25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 80^{\circ}\text{C}$	-3.0	0	+3.0	deg
	Function Generator Error	$25^{\circ}\text{C} \le \text{T}_{\text{A}} \le 105^{\circ}\text{C}$	-5.5	0	+5.5	deg
	Function Generator Error	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 25^{\circ}\text{C}$	-3.0	0	+3.0	deg
Θ/V	Function Generator Gain	$T_A = 25$ °C, Θ vs V_{OUT}/F	60	77	95	°/V

Notes:

- 1. Input is clamped by an internal 12 V Zener.
- 2. Applies to % of full scale (270°).
- 3. Deviation from nominal per Table 1 after calibration at 0° and 270°.

TYPICAL PERFORMANCE CHARACTERISTICS

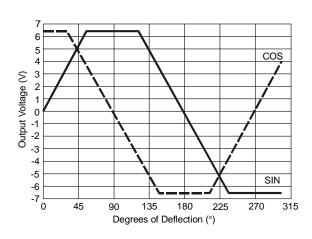


Figure 1. Function Generator Output Voltage vs. Degrees of Deflection

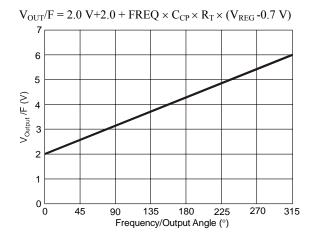


Figure 2. Charge Pump Output Voltage vs.
Output Angle

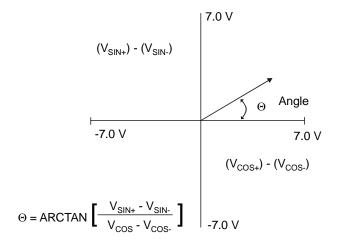
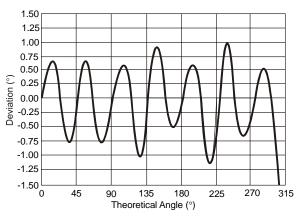



Figure 3. Output Angle in Polar Form

Figure 4. Nominal Output Deviation

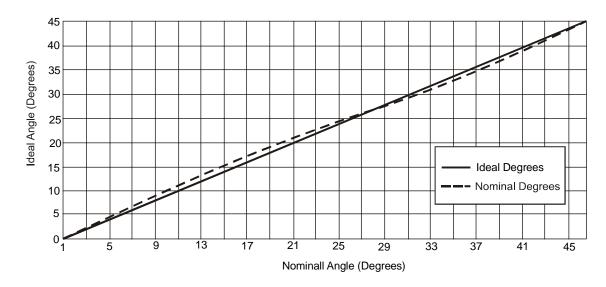


Figure 5. Nominal Angle vs. Ideal Angle (After Calibrating at 180°)

Table 1. Function Generator Output Nominal Angle vs. Ideal Angle (After Calibrating at 270°)

Ideal @ Degrees	Nominal	Ideal @ Degrees	Nominal O Degrees	Ideal @ Degrees	Nominal O Degrees	Ideal @ Degrees	Nominal O Degrees	Ideal @ Degrees	Nominal	Ideal @ Degrees	Nominal ② Degrees
0	0	17	17.98	34	33.04	75	74.00	160	Pedicte	245	244.63
1	1.09	18	18.96	35	34.00	80	79.16	165	164.00	250	249.14
2	2.19	19	19.92	36	35.00	85	84.53	170	169.16	255	254.00
3	3.29	20	20.86	37	36.04	90	90.00	175	174.33	260	259.16
4	4.38	21	21.79	38	37.11	95	95.47	180	180.00	265	264.53
5	5.47	22	22.71	39	38.21	100	100.84	185	185.47	270	270.00
6	6.56	23	23.61	40	39.32	105	106.00	190	190.84	275	275.47
7	7.64	24	24.50	41	40.45	110	110.86	195	196.00	280	280.84
8	8.72	25	25.37	42	41.59	115	115.37	200	200.86	285	286.00
9	9.78	26	26.23	43	42.73	120	119.56	205	205.37	290	290.86
10	10.84	27	27.07	44	43.88	125	124.00	210	209.56	295	295.37
11	11.90	28	27.79	45	45.00	130	129.32	215	214.00	300	299.21
12	12.94	29	28.73	50	50.68	135	135.00	220	219.32	305	303.02
13	13.97	30	29.56	55	56.00	140	140.68	225	225.00		
14	14.99	31	30.39	60	60.44	145	146.00	230	230.58		
15	16.00	32	31.24	65	64.63	150	150.44	235	236.00		
16	17.00	33	32.12	70	69.14	155	154.63	240	240.44	-	_

Note: Temperature, voltage and nonlinearity not included.

CIRCUIT DESCRIPTION and APPLICATION NOTES

The IL8190N is specifically designed for use with air-core meter movements. It includes an input comparator for sensing an input signal from an ignition pulse or speed sensor, a charge pump for frequency to voltage conversion, a bandgap voltage regulator for stable operation, and a function generator with sine and cosine amplifiers to differentially drive the meter coils.

From the partial schematic of Figure 6, the input signal is applied to the FREQ_{IN} lead, this is the input to a high impedance comparator with a typical positive input threshold of 2.0 V and typical hysteresis of 0.5 V. The output of the comparator, SQ_{OUT}, is applied to the charge pump input CP+ through an external capacitor C_{CP}. When the input signal changes state, C_{CP} is charged or discharged through R3 and R4. The charge accumulated on C_{CP} is mirrored to C4 by the Norton Amplifier circuit comprising of Q1, Q2 and Q3. The charge pump output voltage, V_{OUT}/F, ranges from 2.0 V to 6.3 V depending on the input signal frequency and the gain of the charge pump according to the formula:

$$V_{OUT}/F = 2.0 \text{ V} + 2.0 + \text{FREQ} \times C_{CP} \times R_T \times (V_{REG} - 0.7 \text{ V})$$

 R_{T} is a potentiometer used to adjust the gain of the V/F output stage and give the correct meter deflection. The V/F output voltage is applied to the function generator which generates the sine and cosine output voltages. The output voltage of the sine and cosine

amplifiers are derived from the on-chip amplifier and function generator circuitry. The various trip points for the circuit (i.e., 0°, 90°, 180°, 270°) are determined by an internal resistor divider and the bandgap voltage reference. The coils are differentially driven, allowing bidirectional current flow in the outputs, thus providing up to 305° range of meter deflection. Driving the coils differentially offers faster response time, higher current capability, higher output voltage swings, and reduced external component count. The key advantage is a higher torque output for the pointer.

The output angle, Θ , is equal to the V/F gain multiplied by the function generator gain:

$$\Theta = A_{V/F} \times A_{FG}$$

where:

$$A_{FG} = 77^{\circ}/V(typ)$$

The relationship between input frequency and output angle is:

$$\Theta = A_{FG} \times 2.0 \times FREQ \times C_{CP} \times R_{T} \times (V_{REG} - 0.7 \text{ V})$$
or,
$$\Theta = 970 \times FREQ \times C_{CP} \times R_{T}$$

The ripple voltage at the V/F converter's output is determined by the ratio of C_{CP} and C4 in the formula:

$$\Delta V = \frac{\text{CCP}(\text{Vreg - 0.7 V})}{\text{C4}}$$

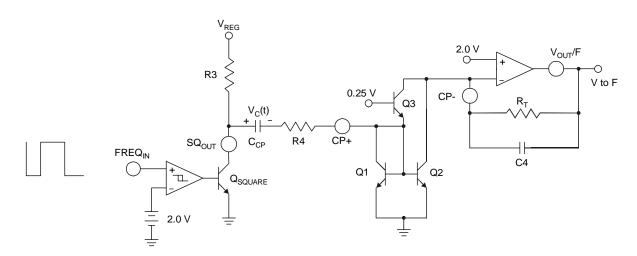
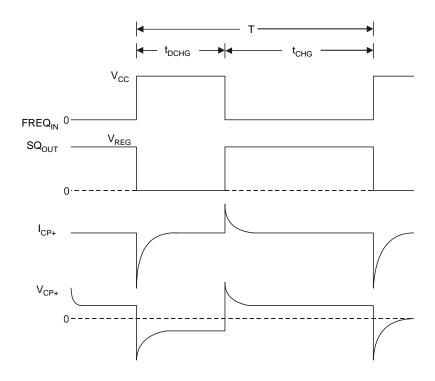
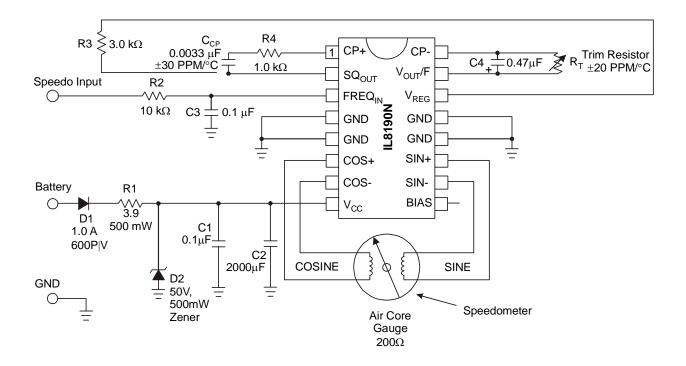


Figure 6. Partial Schematic of Input and Charge Pump




Figure 7. Timing Diagram of FREQ $_{\rm IN}$ and $I_{\rm CP}$

Ripple voltage on the V/F output causes pointer or needle flutter especially at low input frequencies.

The response time of the V/F is determined by the time constant formed by R_T and C4. Increasing the value of C4 will reduce the ripple on the V/F output but will also increase the response time. An increase in response time causes a very slow meter movement and may be unacceptable for many applications.

The IL8190N has an undervoltage detect circuit that disables the input comparator when V_{CC} falls below 8.0 V (typical). With no input signal the V/F output voltage decreases and the needle moves towards zero. A second undervoltage detect circuit at 6.0 V(typical) causes the function generator to

generate a differential SIN drive voltage of zero volts and the differential COS drive voltage to go as high as possible. This combination of voltages (Figure 1) across the meter coil moves the needle to the 0° position. Connecting a large capacitor(> 2000 μF) to the $V_{\rm CC}$ lead (C2 in Figure 8) increases the time between these undervoltage points since the capacitor discharges slowly and ensures that the needle moves towards 0° as opposed to 360° . The exact value of the capacitor depends on the response time of the system, he maximum meter deflection and the current consumption of the circuit. It should be selected by breadboarding the design in the lab.

Notes:

- 1. C2 (\geq 2000 μ F) is needed if return to zero function is required.
- 2. The product of C4 and R_T have a direct effect on gain and therefore directly affect temperature compensation.
- 3. C4 Range; 20 pF to $2.0 \mu F$.
- 4. R4 Range; $100 \text{ k}\Omega$ to $500 \text{ k}\Omega$.
- 5. The IC must be protected from transients above 60 V and reverse battery conditions.
- 6. Additional filtering on the FREQ_{IN} lead may be required.
- 7. Gauge coil connections to the IC must be kept as short as possible (≤ 3.0 inch) for best pointer stability.

Figure 8. Speedometer or Tachometer Application

Design Example

Maximum meter Deflection = 270° Maximum Input Frequency = 350 Hz

1. Select R_T and C_{CP}

$$\Theta = 970 \times FREQ \times C_{CP} \times R_T = 270^{\circ}$$

Let $C_{CP} = 0.0033 \mu F$, find R_T

$$R_T = \frac{270^{\circ}}{970 \times 350 Hz \times 0.0033 \,\mu\text{F}}$$

$$R_T = 243 \text{ k}\Omega$$

 R_T should be a 250 k Ω potentiometer to trim out any inaccuracies due to IC tolerances or meter movement pointer placement.

2. Select R3 and R4

Resistor R3 sets the output current from the voltage regulator. The maximum output current from the voltage regulator is 10 mA. R3 must ensure that the current does not exceed this limit.

Choose R3 = $3.3 \text{ k}\Omega$

The charge current for
$$C_{CP}$$
 is
$$\frac{V_{REG}\text{--}0.7\ V}{3.3\ k\Omega}=1.90\ mA$$

C_{CP} must charge and discharge fully during each cycle of the input signal. Time for one cycle at maximum frequency is 2.85 ms. To ensure that C_{CP} is charged, assume that the (R3 + R4) C_{CP} time constant is less than 10% of the minimum input period.

$$T = 10\% \times \frac{1}{350 \,\text{Hz}} = 285 \,\mu\text{s}$$

Choose $R4 = 1.0 \text{ k}\Omega$.

Discharge time:

$$t_{DCHG}$$
 = R3 × C_{CP} = 3.3 k Ω × 0.0033 μ F = 10.9 μ s

$$t_{CHG} = (R3 + R4)C_{CP} = 4.3 \text{ k}\Omega \times 0.0033 \text{ }\mu\text{F} = 14.2 \text{ }\mu\text{s}$$

3. Determine C4

C4 is selected to satisfy both the maximum allowable ripple voltage and response time of the meter movement.

$$C4 = \frac{C\text{CP}(V\text{REG} - 0.7V)}{\Delta V\text{max}}$$

With C4 = 0.47 μ F, the V/F ripple voltage is 44 mV.

The last component to be selected is the return to zero capacitor C2. This is selected by increasing the input signal frequency to its maximum so the pointer is at its maximum deflection, then removing the power from the circuit. C2 should be large enough to ensure that the pointer always returns to the 0° position rather than 360° under all operating conditions.

Figure 11 shows how the IL8190N and the CS8441 are used to produce a Speedometer and Odometer circuit.

In some cases a designer may wish to use the IL8190N only as a driver for an air-core meter having performed the V/F conversion elsewhere in the circuit.

Figure 9 shows how to drive the IL8190N with a DC voltage ranging from 2.0 V to 6.0 V. This is accomplished by forcing a voltage on the V_{OUT}/F lead. The alternative scheme shown in Figure 10 uses an external op amp as a buffer and operates over an input voltage range of 0 V to 4.0 V.

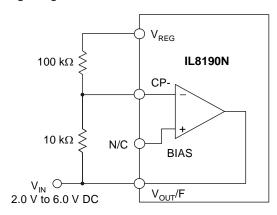


Figure 9. Driving the IL8190N from an External DC Voltage

Figures 9 and 10 are not temperature compensated.

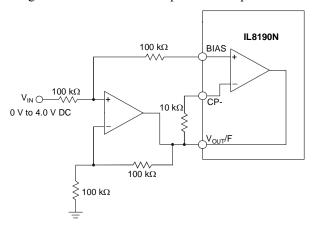
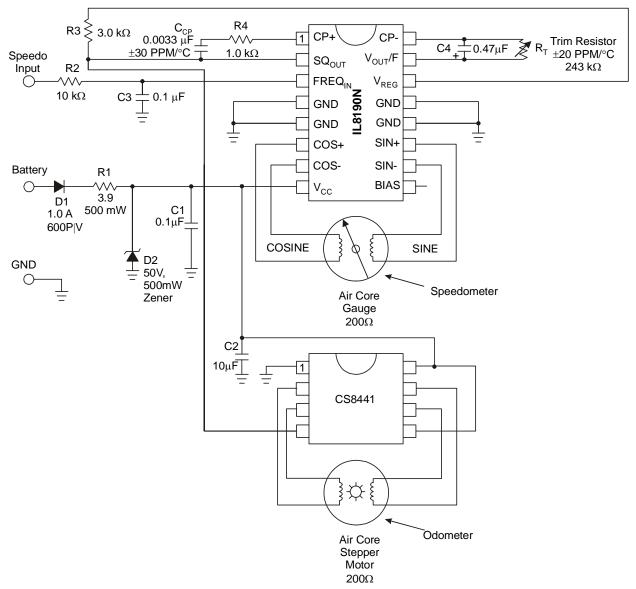
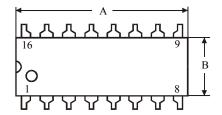



Figure 10. Driving the IL8190N from an External DC Voltage Using an Op Amp Buffer


Notes:

- 1. $C2 = 10 \mu F$ with CS8441 application.
- 2. The product of C4 and R_T have a direct effect on gain and therefore directly affect temperature compensation.
- 3. C4 Range; 20 pF to 2.0 μF.
- 4. R4 Range; $100 \text{ k}\Omega$ to $500 \text{ k}\Omega$.
- 5. The IC must be protected from transients above 60 V and reverse battery conditions.
- 6. Additional filtering on the FREQ_{IN} lead may be required.
- 7. Gauge coil connections to the IC must be kept as short as possible (≤ 3.0 inch) for best pointer stability.

Figure 11. Speedometer With Odometer or Tachometer Application

PACKAGE DIMENTIONS

N SUFFIX PLASTIC (MS - 001BB)

→ F -	← L →
C C SEATING	
PLANE NJ PLANE	
\rightarrow G \leftarrow D \leftarrow K \rightarrow	H—H
⊕ 0.25 (0.010) T	

	1		
月月月月	C SEATING PLANE		
		∭ → J\+	'
	D	H—H	
$ \bigoplus 0.25 (0)$	0.010) M T		

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions 0.25 mm (0.010) per side.

	Dimensions, mm		
Symbol	MIN	MAX	
A	18.67	19.69	
В	6.10	7.11	
С		5.33	
D	0.36	0.56	
F	1.14	1.78	
G	2.54		
Н	7.62		
J	0°	10°	
K	2.92	3.81	
L	7.62	8.26	
M	0.20	0.36	
N	0.38		